Welkom...

dr. F.H.C. Bertrand (Fleurianne)

Expertises

Engineering & Materials Science
Elasticity
Error Analysis
Finite Element Method
Mathematics
Eigenvalue Problem
Finite Element
First-Order System
Least Squares
Linear Elasticity

Publicaties

Recent
Bertrand, F., & Boffi, D. (2022). First order least-squares formulations for eigenvalue problems. IMA Journal of Numerical Analysis, 42(2), 1339–1363. https://doi.org/10.1093/imanum/drab005
Bertrand, F., Lambers, L., & Ricken, T. (2021). Least Squares Finite Element Method for Hepatic Sinusoidal Blood Flow. Proceedings in Applied Mathematics and Mechanics, 20(1), [e202000306]. https://doi.org/10.1002/pamm.202000306
Bertrand, F., Kober, B., Moldenhauer, M., & Starke, G. (2021). Weakly symmetric stress equilibration and a posteriori error estimation for linear elasticity. Numerical Methods for Partial Differential Equations, 37(4), 2783-2802. https://doi.org/10.1002/num.22741
Bertrand, F., Ern, A., & Radu, F. A. (2021). Editorial Robust and reliable finite element methods in poromechanics. Computers and mathematics with applications, 91, 1-2. https://doi.org/10.1016/j.camwa.2021.04.012
Bertrand, F., Demkowicz, L., & Gopalakrishnan, J. (2021). Recent Advances in Least-Squares and Discontinuous Petrov–Galerkin Finite Element Methods. Computers and mathematics with applications, 95, 1-3. https://doi.org/10.1016/j.camwa.2021.05.029
Alzaben, L. , Bertrand, F., & Boffi, D. (2021). Computation of eigenvalues in linear elasticity with least-squares finite elements: dealing with the mixed system. In F. Chinesta, R. Abgrall, O. Allix, & M. Kaliske (Eds.), 14th World Congress on Computational Mechanics: WCCM-ECCOMAS Congress 2020 (Vol. 700, pp. 1-7). SCIPEDIA. https://doi.org/10.23967/wccm-eccomas.2020.095
Bertrand, F., Boffi, D., Gedicke, J., & Khan, A. (2021). Some remarks on the a posteriori error analysis of the mixed laplace eigenvalue problem. In F. Chinesta, R. Abgrall, O. Allix, & M. Kaliske (Eds.), 14th World Congress on Computational Mechanics: WCCM-ECCOMAS Congress 2020 (Vol. 700, pp. 1-10). SCIPEDIA. https://doi.org/10.23967/wccm-eccomas.2020.314
Bertrand, F., & Schneider, H. (2021). Least-squares methods for linear elasticity: refined error estimates. In F. Chinesta, R. Abgrall, O. Allix, & M. Kaliske (Eds.), 14th World Congress on Computational Mechanics: WCCM-ECCOMAS Congress 2020 (Vol. 800, pp. 1-13). SCIPEDIA. https://doi.org/10.23967/wccm-eccomas.2020.137
Bertrand, F. (2021). A decomposition of the raviart-thomas finite element into a scalar and an orientation-preserving part. In F. Chinesta, R. Abgrall, O. Allix, & M. Kaliske (Eds.), 14th World Congress on Computational Mechanics: WCCM-ECCOMAS Congress 2020 (Vol. 2100). SCIPEDIA. https://doi.org/10.23967/wccm-eccomas.2020.034
Schlottbom, M. , Bertrand, F., & Starke, G. (2021). Towards a metriplectic structure for radiative transfer equations. In Numerical Analysis of Electromagnetic Problems: OWR Workshop Report 2021, 16 https://doi.org/10.14760/OWR-2021-16
Bertrand, F., & Boffi, D. (2020). The Prager–Synge theorem in reconstruction based a posteriori error estimation. In 75 Years of Mathematics of Computation American Mathematical Society. https://doi.org/10.1090/conm/754
Bertrand, F., & Boffi, D. (2020). The Prager-Synge theorem in reconstruction based a posteriori error estimation. In S. C. Brenner, I. Shparlinski, C-W. Shu, & D. B. Szyld (Eds.), 75 Years of Mathematics of Computation: Symposium Celebrating 75 Years of Mathematics of Computation November 1–3, 2018 (Contemporary Mathematics; Vol. 754). American Mathematical Society. https://doi.org/10.1090/conm/754/15151
Bertrand, F., Boffi, D., & Stenberg, R. (2020). Asymptotically Exact A Posteriori Error Analysis for the Mixed Laplace Eigenvalue Problem. Computational Methods in Applied Mathematics, 20(2), 215-225. https://doi.org/10.1515/cmam-2019-0099

Pure Link

Google Scholar Link

Verbonden aan Opleidingen

Master

Vakken Collegejaar  2021/2022

Vakken in het huidig collegejaar worden toegevoegd op het moment dat zij definitief zijn in het Osiris systeem. Daarom kan het zijn dat de lijst nog niet compleet is voor het gehele collegejaar.
 

Vakken Collegejaar  2020/2021

Contactgegevens

Bezoekadres

Universiteit Twente
Faculty of Electrical Engineering, Mathematics and Computer Science
Zilverling (gebouwnr. 11)
Hallenweg 19
7522NH  Enschede

Navigeer naar locatie

Postadres

Universiteit Twente
Faculty of Electrical Engineering, Mathematics and Computer Science
Zilverling
Postbus 217
7500 AE Enschede