Expertises
Engineering & Materials Science
# Elasticity
# Error Analysis
Mathematics
# Eigenvalue Problem
# Error Estimator
# Finite Element
# First-Order System
# Least Squares
# Linear Elasticity
Publicaties
Recent
Bertrand, F., Boffi, D., & Halim, A. (2023).
A reduced order model for the finite element approximation of eigenvalue problems.
Computer methods in applied mechanics and engineering,
404, [115696].
https://doi.org/10.1016/j.cma.2022.115696
Bertrand, F., Boffi, D., & Schneider, H. (2023).
Discontinuous Petrov-Galerkin Approximation of Eigenvalue Problems.
Computational Methods in Applied Mathematics,
23(1), 1-17.
https://doi.org/10.1515/cmam-2022-0069
Alzaben, L.
, Bertrand, F., & Boffi, D. (2022).
On the Spectrum of an Operator Associated with Least-Squares Finite Elements for Linear Elasticity.
Computational Methods in Applied Mathematics,
22(3), 511-528.
https://doi.org/10.1515/cmam-2022-0044
Bertrand, F., & Boffi, D. (2022).
First order least-squares formulations for eigenvalue problems.
IMA Journal of Numerical Analysis,
42(2), 1339–1363.
https://doi.org/10.1093/imanum/drab005
Bertrand, F. (2021).
Phase field method for quasi‐static brittle fracture: an adaptive algorithm based on the dual variable.
Proceedings in Applied Mathematics and Mechanics,
21(1), [e202100213].
https://doi.org/10.1002/pamm.202100213
Bertrand, F., Lambers, L., & Ricken, T. (2021).
Least Squares Finite Element Method for Hepatic Sinusoidal Blood Flow.
Proceedings in Applied Mathematics and Mechanics,
20(1), [e202000306].
https://doi.org/10.1002/pamm.202000306
Bertrand, F., & Starke, G. (2021).
A posteriori error estimates by weakly symmetric stress reconstruction for the Biot problem.
Computers & mathematics with applications,
91, 3-16.
https://doi.org/10.1016/j.camwa.2020.10.011
Bertrand, F., Kober, B., Moldenhauer, M., & Starke, G. (2021).
Weakly symmetric stress equilibration and a posteriori error estimation for linear elasticity.
Numerical Methods for Partial Differential Equations,
37(4), 2783-2802.
https://doi.org/10.1002/num.22741
Bertrand, F., Boffi, D., & Ma, R. (2021).
An Adaptive Finite Element Scheme for the Hellinger-Reissner Elasticity Mixed Eigenvalue Problem.
Computational Methods in Applied Mathematics,
21(3), 501-512.
https://doi.org/10.1515/cmam-2020-0034
Bertrand, F., & Pirch, E. (2021).
Least-squares finite element method for a meso-scale model of the spread of COVID-19.
Computation,
9(2), 1-22. [18].
https://doi.org/10.3390/computation9020018
Bertrand, F., & Boffi, D. (2021).
Least-squares formulations for eigenvalue problems associated with linear elasticity.
Computers & mathematics with applications,
95, 19-27.
https://doi.org/10.1016/j.camwa.2020.12.013
Bertrand, F., Boffi, D., & G. de Diego, G. (2021).
Convergence analysis of the scaled boundary finite element method for the Laplace equation.
Advances in computational mathematics,
47(3), [34].
https://doi.org/10.1007/s10444-021-09852-z
Bertrand, F., Ern, A., & Radu, F. A. (2021).
Editorial Robust and reliable finite element methods in poromechanics.
Computers & mathematics with applications,
91, 1-2.
https://doi.org/10.1016/j.camwa.2021.04.012
Bertrand, F., Demkowicz, L., & Gopalakrishnan, J. (2021).
Recent Advances in Least-Squares and Discontinuous Petrov–Galerkin Finite Element Methods.
Computers & mathematics with applications,
95, 1-3.
https://doi.org/10.1016/j.camwa.2021.05.029
Alzaben, L.
, Bertrand, F., & Boffi, D. (2021).
Computation of eigenvalues in linear elasticity with least-squares finite elements: dealing with the mixed system. In F. Chinesta, R. Abgrall, O. Allix, & M. Kaliske (Eds.),
14th World Congress on Computational Mechanics: WCCM-ECCOMAS Congress 2020 (Vol. 700, pp. 1-7). SCIPEDIA.
https://doi.org/10.23967/wccm-eccomas.2020.095
Bertrand, F., Boffi, D., Gedicke, J., & Khan, A. (2021).
Some remarks on the a posteriori error analysis of the mixed laplace eigenvalue problem. In F. Chinesta, R. Abgrall, O. Allix, & M. Kaliske (Eds.),
14th World Congress on Computational Mechanics: WCCM-ECCOMAS Congress 2020 (Vol. 700, pp. 1-10). SCIPEDIA.
https://doi.org/10.23967/wccm-eccomas.2020.314
Bertrand, F., & Schneider, H. (2021).
Least-squares methods for linear elasticity: refined error estimates. In F. Chinesta, R. Abgrall, O. Allix, & M. Kaliske (Eds.),
14th World Congress on Computational Mechanics: WCCM-ECCOMAS Congress 2020 (Vol. 800, pp. 1-13). SCIPEDIA.
https://doi.org/10.23967/wccm-eccomas.2020.137
Bertrand, F. (2021).
A decomposition of the raviart-thomas finite element into a scalar and an orientation-preserving part. In F. Chinesta, R. Abgrall, O. Allix, & M. Kaliske (Eds.),
14th World Congress on Computational Mechanics: WCCM-ECCOMAS Congress 2020 (Vol. 2100). SCIPEDIA.
https://doi.org/10.23967/wccm-eccomas.2020.034
Schlottbom, M.
, Bertrand, F., & Starke, G. (2021).
Towards a metriplectic structure for radiative transfer equations. In
Numerical Analysis of Electromagnetic Problems: OWR Workshop Report 2021, 16
https://doi.org/10.14760/OWR-2021-16
Bertrand, F., & Boffi, D. (2020).
The Prager–Synge theorem in reconstruction based a posteriori error estimation. In
75 Years of Mathematics of Computation American Mathematical Society.
https://doi.org/10.1090/conm/754
Bertrand, F., & Boffi, D. (2020).
The Prager-Synge theorem in reconstruction based a posteriori error estimation. In S. C. Brenner, I. Shparlinski, C-W. Shu, & D. B. Szyld (Eds.),
75 Years of Mathematics of Computation: Symposium Celebrating 75 Years of Mathematics of Computation November 1–3, 2018 (Contemporary Mathematics; Vol. 754). American Mathematical Society.
https://doi.org/10.1090/conm/754/15151
Bertrand, F., & Starke, G. (2020).
A posteriori error estimates by weakly symmetric stress reconstruction for the Biot problem. ArXiv.org.
https://arxiv.org/abs/2010.09318
Bertrand, F., Boffi, D., & Diego, G. G. D. (2020).
Convergence analysis of the scaled boundary finite element method for the Laplace equation. ArXiv.org.
Bertrand, F., Boffi, D., & Ma, R. (2020).
An adaptive finite element scheme for the Hellinger-Reissner elasticity mixed eigenvalue problem. ArXiv.org.
Bertrand, F., & Boffi, D. (2020).
First order least-squares formulations for eigenvalue problems. ArXiv.org.
Google Scholar Link
Verbonden aan Opleidingen
Master
Vakken Collegejaar 2022/2023
Contactgegevens
Bezoekadres
Universiteit Twente
Drienerlolaan 5
7522 NB Enschede
Postadres
Universiteit Twente
Postbus 217
7500 AE Enschede