Expertises
Engineering & Materials Science
# Elasticity
# Error Analysis
Mathematics
# Eigenvalue Problem
# Error Estimator
# Finite Element
# First-Order System
# Least Squares
# Linear Elasticity
Verbonden aan
Publicaties
Recent
Bertrand, F., Boffi, D., & Schneider, H. (2022).
Discontinuous Petrov-Galerkin Approximation of Eigenvalue Problems.
Computational Methods in Applied Mathematics.
https://doi.org/10.1515/cmam-2022-0069
Alzaben, L.
, Bertrand, F., & Boffi, D. (2022).
On the Spectrum of an Operator Associated with Least-Squares Finite Elements for Linear Elasticity.
Computational Methods in Applied Mathematics,
22(3), 511-528.
https://doi.org/10.1515/cmam-2022-0044
Bertrand, F., & Boffi, D. (2022).
First order least-squares formulations for eigenvalue problems.
IMA Journal of Numerical Analysis,
42(2), 1339–1363.
https://doi.org/10.1093/imanum/drab005
Bertrand, F. (2021).
Phase field method for quasi‐static brittle fracture: an adaptive algorithm based on the dual variable.
Proceedings in Applied Mathematics and Mechanics,
21(1), [e202100213].
https://doi.org/10.1002/pamm.202100213
Bertrand, F., Lambers, L., & Ricken, T. (2021).
Least Squares Finite Element Method for Hepatic Sinusoidal Blood Flow.
Proceedings in Applied Mathematics and Mechanics,
20(1), [e202000306].
https://doi.org/10.1002/pamm.202000306
Bertrand, F., & Starke, G. (2021).
A posteriori error estimates by weakly symmetric stress reconstruction for the Biot problem.
Computers and mathematics with applications,
91, 3-16.
https://doi.org/10.1016/j.camwa.2020.10.011
Bertrand, F., Kober, B., Moldenhauer, M., & Starke, G. (2021).
Weakly symmetric stress equilibration and a posteriori error estimation for linear elasticity.
Numerical Methods for Partial Differential Equations,
37(4), 2783-2802.
https://doi.org/10.1002/num.22741
Bertrand, F., Boffi, D., & Ma, R. (2021).
An Adaptive Finite Element Scheme for the Hellinger-Reissner Elasticity Mixed Eigenvalue Problem.
Computational Methods in Applied Mathematics,
21(3), 501-512.
https://doi.org/10.1515/cmam-2020-0034
Bertrand, F., & Pirch, E. (2021).
Least-squares finite element method for a meso-scale model of the spread of COVID-19.
Computation,
9(2), 1-22. [18].
https://doi.org/10.3390/computation9020018
Bertrand, F., & Boffi, D. (2021).
Least-squares formulations for eigenvalue problems associated with linear elasticity.
Computers and mathematics with applications,
95, 19-27.
https://doi.org/10.1016/j.camwa.2020.12.013
Bertrand, F., Boffi, D., & G. de Diego, G. (2021).
Convergence analysis of the scaled boundary finite element method for the Laplace equation.
Advances in computational mathematics,
47(3), [34].
https://doi.org/10.1007/s10444-021-09852-z
Bertrand, F., Ern, A., & Radu, F. A. (2021).
Editorial Robust and reliable finite element methods in poromechanics.
Computers and mathematics with applications,
91, 1-2.
https://doi.org/10.1016/j.camwa.2021.04.012
Bertrand, F., Demkowicz, L., & Gopalakrishnan, J. (2021).
Recent Advances in Least-Squares and Discontinuous Petrov–Galerkin Finite Element Methods.
Computers and mathematics with applications,
95, 1-3.
https://doi.org/10.1016/j.camwa.2021.05.029
Alzaben, L.
, Bertrand, F., & Boffi, D. (2021).
Computation of eigenvalues in linear elasticity with least-squares finite elements: dealing with the mixed system. In F. Chinesta, R. Abgrall, O. Allix, & M. Kaliske (Eds.),
14th World Congress on Computational Mechanics: WCCM-ECCOMAS Congress 2020 (Vol. 700, pp. 1-7). SCIPEDIA.
https://doi.org/10.23967/wccm-eccomas.2020.095
Bertrand, F., Boffi, D., Gedicke, J., & Khan, A. (2021).
Some remarks on the a posteriori error analysis of the mixed laplace eigenvalue problem. In F. Chinesta, R. Abgrall, O. Allix, & M. Kaliske (Eds.),
14th World Congress on Computational Mechanics: WCCM-ECCOMAS Congress 2020 (Vol. 700, pp. 1-10). SCIPEDIA.
https://doi.org/10.23967/wccm-eccomas.2020.314
Bertrand, F., & Schneider, H. (2021).
Least-squares methods for linear elasticity: refined error estimates. In F. Chinesta, R. Abgrall, O. Allix, & M. Kaliske (Eds.),
14th World Congress on Computational Mechanics: WCCM-ECCOMAS Congress 2020 (Vol. 800, pp. 1-13). SCIPEDIA.
https://doi.org/10.23967/wccm-eccomas.2020.137
Bertrand, F. (2021).
A decomposition of the raviart-thomas finite element into a scalar and an orientation-preserving part. In F. Chinesta, R. Abgrall, O. Allix, & M. Kaliske (Eds.),
14th World Congress on Computational Mechanics: WCCM-ECCOMAS Congress 2020 (Vol. 2100). SCIPEDIA.
https://doi.org/10.23967/wccm-eccomas.2020.034
Schlottbom, M.
, Bertrand, F., & Starke, G. (2021).
Towards a metriplectic structure for radiative transfer equations. In
Numerical Analysis of Electromagnetic Problems: OWR Workshop Report 2021, 16
https://doi.org/10.14760/OWR-2021-16
Bertrand, F., & Boffi, D. (2020).
The Prager–Synge theorem in reconstruction based a posteriori error estimation. In
75 Years of Mathematics of Computation American Mathematical Society.
https://doi.org/10.1090/conm/754
Bertrand, F., & Boffi, D. (2020).
The Prager-Synge theorem in reconstruction based a posteriori error estimation. In S. C. Brenner, I. Shparlinski, C-W. Shu, & D. B. Szyld (Eds.),
75 Years of Mathematics of Computation: Symposium Celebrating 75 Years of Mathematics of Computation November 1–3, 2018 (Contemporary Mathematics; Vol. 754). American Mathematical Society.
https://doi.org/10.1090/conm/754/15151
Bertrand, F., Boffi, D., & Ma, R. (2020).
An adaptive finite element scheme for the Hellinger-Reissner elasticity mixed eigenvalue problem. ArXiv.
Bertrand, F., & Boffi, D. (2020).
First order least-squares formulations for eigenvalue problems. ArXiv.
Bertrand, F., & Boffi, D. (2020).
Least-squares for linear elasticity eigenvalue problem. ArXiv.
Bertrand, F., Lambers, L., & Ricken, T. (2020).
Least Squares Finite Element Method for Hepatic Sinusoidal Blood Flow. ArXiv.
Pure Link
Google Scholar Link
Verbonden aan Opleidingen
Master
Vakken Collegejaar 2022/2023
Vakken in het huidig collegejaar worden toegevoegd op het moment dat zij definitief zijn in het Osiris systeem. Daarom kan het zijn dat de lijst nog niet compleet is voor het gehele collegejaar.
Vakken Collegejaar 2021/2022
Contactgegevens
Bezoekadres
Universiteit Twente
Faculty of Electrical Engineering, Mathematics and Computer Science
Zilverling
(gebouwnr. 11)
Hallenweg 19
7522NH Enschede
Postadres
Universiteit Twente
Faculty of Electrical Engineering, Mathematics and Computer Science
Zilverling
Postbus 217
7500 AE Enschede