Johannes Schmidt-Hieber is hoogleraar statistiek op deĀ Universiteit Twente. Link naar persoonlijke webpagina
Expertises
Mathematics
- Gaussian Process
- Bounds
- Kriging
- Parameters
- Bayesian
Economics, Econometrics and Finance
- Measure of Dispersion
- Estimation Theory
- Information
Organisaties
Publicaties
Jump to: 2025 | 2024 | 2023 | 2022 | 2021
2025
Transfer learning, generative modelling, and nonparametric regression (2025)[Thesis › PhD Thesis - Research UT, graduation UT]. University of Twente. Zamolodtchikov, P.https://doi.org/10.3990/1.9789036564649
2024
Convergence guarantees for forward gradient descent in the linear regression model (2024)Journal of statistical planning and inference, 233. Article 106174. Bos, T. & Schmidt-Hieber, J.https://doi.org/10.1016/j.jspi.2024.106174Improving the Convergence Rates of Forward Gradient Descent with Repeated Sampling (2024)[Working paper › Preprint]. ArXiv.org. Dexheimer, N. & Schmidt-Hieber, J.https://doi.org/10.48550/arXiv.2411.17567Understanding the Effect of GCN Convolutions in Regression Tasks (2024)[Working paper › Preprint]. ArXiv.org. Chen, J., Schmidt-Hieber, J., Donnat, C. & Klopp, O.https://doi.org/10.48550/arXiv.2410.20068On the VC dimension of deep group convolutional neural networks (2024)[Working paper › Preprint]. ArXiv.org. Sepliarskaia, A., Langer, S. & Schmidt-Hieber, J.https://doi.org/10.48550/arXiv.2410.15800Lower bounds for the trade-off between bias and mean absolute deviation (2024)Statistics & probability letters, 213. Article 110182. Derumigny, A. & Schmidt-Hieber, J.https://doi.org/10.1016/j.spl.2024.110182Local convergence rates of the nonparametric least squares estimator with applications to transfer learning (2024)Bernoulli, 30(3), 1845-1877. Schmidt-Hieber, J. & Zamolodtchikov, P.https://doi.org/10.3150/23-BEJ1655Dropout Regularization Versus l2-Penalization in the Linear Model (2024)Journal of machine learning research, 25, 1-48. Article 204. Clara, G., Langer, S. & Schmidt-Hieber, J.https://www.jmlr.org/papers/v25/23-0803.htmlCodivergences and information matrices (2024)Information Geometry, 7, 253-282. Derumigny, A. & Schmidt-Hieber, J.https://doi.org/10.1007/s41884-024-00135-2On the inability of Gaussian process regression to optimally learn compositional functions (2024)In NIPS'22: Proceedings of the 36th International Conference on Neural Information Processing Systems (pp. 22341 -22353). Article 1623. Curran Associates Inc.. Giordano, M., Ray, K. & Schmidt-Hieber, J.https://doi.org/10.5555/3600270Johannes Schmidt-Hieber's contribution to the Discussion of 'the Discussion Meeting on Probabilistic and statistical aspects of machine learning' (2024)Journal of the Royal Statistical Society. Series B: Statistical Methodology, 86(2), 329. Schmidt-Hieber, J.https://doi.org/10.1093/jrsssb/qkae007Correction to āNonparametric regression using deep neural networks with ReLU activation functionā (2024)Annals of statistics, 52(1), 413-414. Schmidt-Hieber, J. & Vu, D.https://doi.org/10.1214/24-AOS2351A supervised deep learning method for nonparametric density estimation (2024)Electronic Journal of Statistics, 18(2), 5601-5658. Bos, T. & Schmidt-Hieber, J.https://doi.org/10.1214/24-EJS2332
2023
Hebbian learning inspired estimation of the linear regression parameters from queries (2023)[Working paper › Preprint]. ArXiv.org. Schmidt-Hieber, A. J. & Koolen, W. M.https://doi.org/10.48550/arXiv.2311.03483On lower bounds for the bias-variance trade-off (2023)Annals of the Institute of Statistical Mathematics, 51(4), 1510 - 1533. Derumigny, A. & Schmidt-Hieber, A. J.https://doi.org/10.1214/23-AOS2279Lower bounds for the trade-off between bias and mean absolute deviation (2023)[Working paper › Preprint]. ArXiv.org. Derumigny, A. & Schmidt-Hieber, J.https://doi.org/10.48550/arXiv.2303.11706On Generalization Bounds for Deep Networks Based on Loss Surface Implicit Regularization (2023)IEEE transactions on information theory, 69(2), 1203- 1223. Imaizumi, M. & Schmidt-Hieber, A. J.https://doi.org/10.1109/TIT.2022.3215088Posterior Contraction for Deep Gaussian Process Priors (2023)Journal of machine learning research, 24(66), 1-49. Finocchio, G. & Schmidt-Hieber, A. J.https://jmlr.org/papers/volume24/21-0556/21-0556.pdf
2022
On the inability of Gaussian process regression to optimally learn compositional functions (2022)[Working paper › Preprint]. ArXiv.org. Giordano, M., Ray, K. & Schmidt-Hieber, J.https://doi.org/10.48550/arXiv.2205.07764Local convergence rates of the least squares estimator with applications to transfer learning (2022)[Working paper › Preprint]. ArXiv.org. Schmidt-Hieber, J. & Zamolodtchikov, P.https://doi.org/10.48550/arXiv.2204.05003Convergence rates of deep ReLU networks for multiclass classification (2022)Electronic Journal of Statistics, 16(1), 2724 - 2773. Bos, T. & Schmidt-Hieber, A. J.https://doi.org/10.1214/22-EJS2011On the inability of Gaussian process regression to optimally learn compositional functions (2022)In 36th Conference on Neural Information Processing Systems, NeurIPS 2022 (Advances in Neural Information Processing Systems; Vol. 35). Neural information processing systems foundation. Giordano, M., Ray, K. & Schmidt-Hieber, J.https://papers.nips.cc/paper_files/paper/2022/hash/8c420176b45e923cf99dee1d7356a763-Abstract-Conference.html
2021
Posterior analysis of n in the binomial (n,p) problem with both parameters unknownāwith applications to quantitative nanoscopy (2021)Annals of statistics, 49(6), 3534-3558. Schmidt-Hieber, A. J., Schneider, L., Staudt, T., Krajina, A., Aspelmeier, T. & Munk, A.https://doi.org/10.1214/21-AOS2096Two perspectives on high-dimensional estimation problems: posterior contraction and median-of-means (2021)[Thesis › PhD Thesis - Research UT, graduation UT]. University of Twente. Finocchio, G.https://doi.org/10.3990/1.9789036552356Posterior contraction for deep Gaussian process priors (2021)[Working paper › Working paper]. Finocchio, G. & Schmidt-Hieber, A. J.https://arxiv.org/abs/2105.07410
Onderzoeksprofielen
Vakken collegejaar 2024/2025
Vakken in het huidig collegejaar worden toegevoegd op het moment dat zij definitief zijn in het Osiris systeem. Daarom kan het zijn dat de lijst nog niet compleet is voor het gehele collegejaar.
- 191508209 - Internship AM
- 191508309 - Final Project (combination)
- 191508409 - Final Project M-AM
- 202001350 - Analysis II
- 202100112 - Graphical Models and Causality
- 202300016 - Mathematical Statistics 1
- 202300017 - Analysis 3
- 202300018 - Reflection 1
- 202300026 - Mathematical Statistics 2
- 202300130 - Capita Selecta Applied Mathematics
- 202400606 - Statistical Learning
- 202400669 - Capita Selecta Applied Mathematics 2
Vakken collegejaar 2023/2024
- 191508209 - Internship AM
- 191508309 - Final Project (combination)
- 191508409 - Final Project M-AM
- 200900030 - Onderzoek van Wiskunde
- 201900115 - Statistical Learning
- 202001348 - Mathematical Statistics
- 202001349 - Project Statistics
- 202001350 - Analysis II
- 202001351 - Prooflab Revisited: Diversity in Culture
- 202001385 - Bachelor Assignment AM-TCS Double Degree
- 202100112 - Graphical Models and Causality
- 202200398 - Internship AM-CS
- 202300016 - Mathematical Statistics 1
- 202300017 - Analysis 3
- 202300018 - Reflection 1
- 202300026 - Mathematical Statistics 2
- 202300130 - Capita Selecta Applied Mathematics
Adres

Universiteit Twente
Zilverling (gebouwnr. 11), kamer 2057
Hallenweg 19
7522 NH Enschede
Universiteit Twente
Zilverling 2057
Postbus 217
7500 AE Enschede