Johannes Schmidt-Hieber is hoogleraar statistiek op deĀ Universiteit Twente. Link naar persoonlijke webpagina

Expertises

  • Mathematics

    • Gaussian Process
    • Bounds
    • Kriging
    • Parameters
    • Bayesian
  • Economics, Econometrics and Finance

    • Measure of Dispersion
    • Estimation Theory
    • Information

Organisaties

Publicaties

Jump to: 2025 | 2024 | 2023 | 2022 | 2021

2025

Transfer learning, generative modelling, and nonparametric regression (2025)[Thesis › PhD Thesis - Research UT, graduation UT]. University of Twente. Zamolodtchikov, P.https://doi.org/10.3990/1.9789036564649

2024

Convergence guarantees for forward gradient descent in the linear regression model (2024)Journal of statistical planning and inference, 233. Article 106174. Bos, T. & Schmidt-Hieber, J.https://doi.org/10.1016/j.jspi.2024.106174Improving the Convergence Rates of Forward Gradient Descent with Repeated Sampling (2024)[Working paper › Preprint]. ArXiv.org. Dexheimer, N. & Schmidt-Hieber, J.https://doi.org/10.48550/arXiv.2411.17567Understanding the Effect of GCN Convolutions in Regression Tasks (2024)[Working paper › Preprint]. ArXiv.org. Chen, J., Schmidt-Hieber, J., Donnat, C. & Klopp, O.https://doi.org/10.48550/arXiv.2410.20068On the VC dimension of deep group convolutional neural networks (2024)[Working paper › Preprint]. ArXiv.org. Sepliarskaia, A., Langer, S. & Schmidt-Hieber, J.https://doi.org/10.48550/arXiv.2410.15800Lower bounds for the trade-off between bias and mean absolute deviation (2024)Statistics & probability letters, 213. Article 110182. Derumigny, A. & Schmidt-Hieber, J.https://doi.org/10.1016/j.spl.2024.110182Local convergence rates of the nonparametric least squares estimator with applications to transfer learning (2024)Bernoulli, 30(3), 1845-1877. Schmidt-Hieber, J. & Zamolodtchikov, P.https://doi.org/10.3150/23-BEJ1655Dropout Regularization Versus l2-Penalization in the Linear Model (2024)Journal of machine learning research, 25, 1-48. Article 204. Clara, G., Langer, S. & Schmidt-Hieber, J.https://www.jmlr.org/papers/v25/23-0803.htmlCodivergences and information matrices (2024)Information Geometry, 7, 253-282. Derumigny, A. & Schmidt-Hieber, J.https://doi.org/10.1007/s41884-024-00135-2On the inability of Gaussian process regression to optimally learn compositional functions (2024)In NIPS'22: Proceedings of the 36th International Conference on Neural Information Processing Systems (pp. 22341 -22353). Article 1623. Curran Associates Inc.. Giordano, M., Ray, K. & Schmidt-Hieber, J.https://doi.org/10.5555/3600270Johannes Schmidt-Hieber's contribution to the Discussion of 'the Discussion Meeting on Probabilistic and statistical aspects of machine learning' (2024)Journal of the Royal Statistical Society. Series B: Statistical Methodology, 86(2), 329. Schmidt-Hieber, J.https://doi.org/10.1093/jrsssb/qkae007Correction to ā€œNonparametric regression using deep neural networks with ReLU activation functionā€ (2024)Annals of statistics, 52(1), 413-414. Schmidt-Hieber, J. & Vu, D.https://doi.org/10.1214/24-AOS2351A supervised deep learning method for nonparametric density estimation (2024)Electronic Journal of Statistics, 18(2), 5601-5658. Bos, T. & Schmidt-Hieber, J.https://doi.org/10.1214/24-EJS2332

Onderzoeksprofielen

Scan de QR-code of
Download vCard