Expertises
Engineering & Materials Science
# Heat Storage
# Hot Temperature
# Iron Oxides
# Latent Heat
# Oxidation-Reduction
# Oxides
# Temperature
Physics & Astronomy
# Reactors
Verbonden aan
Publicaties
Recent
Rea, J. E., Oshman, C. J.
, Singh, A., Alleman, J., Buchholz, G., Parilla, P. A., Adamczyk, J. M., Fujishin, H. N., Ortiz, B. R., Braden, T., Bensen, E., Bell, R. T., Siegel, N. P., Ginley, D. S., & Toberer, E. S. (2019).
Prototype latent heat storage system with aluminum-silicon as a phase change material and a Stirling engine for electricity generation.
Energy conversion and management,
199, [111992].
https://doi.org/10.1016/j.enconman.2019.111992
Rea, J. E., Oshman, C. J.
, Singh, A., Alleman, J., Parilla, P. A., Hardin, C. L., Olsen, M. L., Siegel, N. P., Ginley, D. S., & Toberer, E. S. (2018).
Experimental demonstration of a dispatchable latent heat storage system with aluminum-silicon as a phase change material.
Applied energy,
230, 1218-1229.
https://doi.org/10.1016/j.apenergy.2018.09.017
Rea, J. E., Oshman, C., Hardin, C. L.
, Singh, A., Alleman, J., Glatzmaier, G., Parilla, P. A., Olsen, M. L., Sharp, J., Siegel, N. P., Ginley, D. S., & Toberer, E. S. (2018).
Experimental demonstration of a latent heat storage system for dispatchable electricity. In R. Mancilla, & C. Richter (Eds.),
SolarPACES 2017: International Conference on Concentrating Solar Power and Chemical Energy Systems [090022] (AIP Conference Proceedings; Vol. 2033). American Institute of Physics.
https://doi.org/10.1063/1.5067116
Singh, A. (2018).
Thermodynamic analysis of syngas production and sulfur capturing from a mixture of methane and hydrogen sulfide using a solar thermochemical redox cycle.
Industrial and engineering chemistry research,
57(34), 11738-11746.
https://doi.org/10.1021/acs.iecr.8b02484
Oshman, C., Rea, J., Hardin, C.
, Singh, A., Alleman, J., Olsen, M., Glatzmaier, G., Parilla, P., Siegel, N., Ginley, D., & Toberer, E. S. (2018).
Demonstration of a thermosyphon thermal valve for controlled extraction of stored solar thermal energy. In R. Mancilla, & C. Richter (Eds.),
SolarPACES 2017: International Conference on Concentrating Solar Power and Chemical Energy Systems [090021] (AIP Conference Proceedings; Vol. 2033). American Institute of Physics.
https://doi.org/10.1063/1.5067115
Tescari, S.
, Singh, A., Agrafiotis, C., de Oliveira, L., Breuer, S., Schlögl-Knothe, B., Roeb, M., & Sattler, C. (2017).
Experimental evaluation of a pilot-scale thermochemical storage system for a concentrated solar power plant.
Applied energy,
189, 66-75.
https://doi.org/10.1016/j.apenergy.2016.12.032
Singh, A., Tescari, S., Lantin, G., Agrafiotis, C., Roeb, M., & Sattler, C. (2017).
Solar thermochemical heat storage via the Co3O4/CoO looping cycle: Storage reactor modelling and experimental validation.
Solar energy,
144, 453-465.
https://doi.org/10.1016/j.solener.2017.01.052
Tescari, S.
, Singh, A., De Oliveira, L., Breuer, S., Agrafiotis, C., Roeb, M., Sattler, C., Marcher, J., Pagkoura, C., Karagiannakis, G., & Konstandopoulos, A. G. (2017).
Experimental proof of concept of a pilot-scale thermochemical storage unit. In
SolarPACES 2016: International Conference on Concentrating Solar Power and Chemical Energy Systems [090006] (AIP Conference Proceedings; Vol. 1850). American Institute of Physics.
https://doi.org/10.1063/1.4984455
Karagiannakis, G., Pagkoura, C., Konstandopoulos, A. G., Tescari, S.
, Singh, A., Roeb, M., Lange, M., Marcher, J., Jové, A., Prieto, C., Rattenbury, M., & Chasiotis, A. (2017).
Thermochemical storage for CSP via redox structured reactors/heat exchangers: The RESTRUCTURE project. In
SolarPACES 2016: International Conference on Concentrating Solar Power and Chemical Energy Systems [090004] (AIP Conference Proceedings; Vol. 1850). American Institute of Physics.
https://doi.org/10.1063/1.4984453
Singh, A., Lapp, J., Grobbel, J., Brendelberger, S., Reinhold, J. P., Olivera, L., Ermanoski, I., Siegel, N. P., McDaniel, A., Roeb, M., & Sattler, C. (2017).
Design of a pilot scale directly irradiated, high temperature, and low pressure moving particle cavity chamber for metal oxide reduction.
Solar energy,
157, 365-376.
https://doi.org/10.1016/j.solener.2017.08.040
Google Scholar Link
Vakken Collegejaar 2021/2022
Vakken in het huidig collegejaar worden toegevoegd op het moment dat zij definitief zijn in het Osiris systeem. Daarom kan het zijn dat de lijst nog niet compleet is voor het gehele collegejaar.
Vakken Collegejaar 2020/2021
Contactgegevens
Bezoekadres
Universiteit Twente
Faculty of Engineering Technology
Horst Complex
(gebouwnr. 20)
De Horst 2
7522LW Enschede
Postadres
Universiteit Twente
Faculty of Engineering Technology
Horst Complex
Postbus 217
7500 AE Enschede