Ik ben in februari 2024 bij de Universiteit Twente begonnen als universitair docent edge AI. Mijn focus ligt op het ontwerpen van embedded AI en neuromorfische systemen.


Kort CV:


Ph.D. in neuromorfische engineering bij IMSE, proefschrift: Digital Design For Neuromorphic Bio-Inspired Vision Processing

2018-2020: Bij de startup GrAI Matter Labs, later overgenomen door SNAP, heb ik voornamelijk gewerkt aan de architectuur van de NeuronFlow-processor

2020-2024: Bij imec, bij de Hardware Efficient AI-groep, heb ik voornamelijk gewerkt aan de architectuur van de SENECA-processor

2024-heden: universitair docent, Computer Architecture for Embedded Systems

Expertises

  • Computer Science

    • Neural Network
    • Computer Hardware
    • Artificial Intelligence
    • Energy Efficient
    • Electronic Learning
    • Edge AI
    • Multicore
  • Engineering

    • Artificial Neural Network

Organisaties

Mijn onderzoeksinteresses:

  • Neuromorphic Sensing and processing
  • Low Power AI processos
  • Hardware aware algorithm design

Ik gebruik uitgebreid digitale hardware-ontwerptools en gate-level simulaties om hardware-architecturen te co-optimaliseren met neurale netwerkalgoritmen. Enkele van mijn technische ervaringen:

  • Ontwerp van programmeerbare neuromorfische processoren voor ingebedde AI-toepassingen
  • On-device leeralgoritmen en hardwareversnellers
  • Bio-geïnspireerde visuele verwerking
  • Benchmarking en vergelijking van verschillende algoritme-optimalisaties in hardware

Op zoek naar PhD- of postdoc-posities: kijk op de UTwente-carrièrewebsite. Alle posities worden daar geadverteerd en sollicitaties moeten online worden ingediend. Stuur uw sollicitatie niet per e-mail.

Op zoek naar masterscriptie of stage: stuur me een e-mail met uw cv en cijfers (zowel bachelor als master).

Publicaties

2025

TrackCore-F: Deploying Transformer-Based Subatomic Particle Tracking on FPGAs (2025)[Working paper › Preprint]. ArXiv.org. Blankestijn, A., Odyurt, U. & Yousefzadeh, A.https://doi.org/10.48550/arXiv.2509.26335Memory Wall is not gone: A Critical Outlook on Memory Architecture in Digital Neuromorphic Computing (2025)In IEEE Computer Society Annual Symposium on VLSI, ISVLSI 2025 - Conference Proceedings (Proceedings of IEEE Computer Society Annual Symposium on VLSI, ISVLSI). IEEE. Yousefzadeh, A., Sohail, S. & Varbanescu, A. L.https://doi.org/10.1109/ISVLSI65124.2025.11130262Event-based optical flow on neuromorphic processor: ANN vs. SNN comparison based on activation sparsification (2025)Neural networks, 188. Article 107447. Xu, Y., Tang, G., Yousefzadeh, A., de Croon, G. C. H. E. & Sifalakis, M.https://doi.org/10.1016/j.neunet.2025.107447Sparse Convolutional Recurrent Learning for Efficient Event-based Neuromorphic Object Detection (2025)[Working paper › Preprint]. ArXiv.org. Wang, S., Xu, Y., Yousefzadeh, A., Eissa, S., Corporaal, H., Corradi, F. & Tang, G.https://doi.org/10.48550/arXiv.2506.13440Senmap: Multi-objective data-flow mapping and synthesis for hybrid scalable neuromorphic systems (2025)[Working paper › Preprint]. ArXiv.org. Nembhani, P. V., Rhodes, O., Tang, G., Dobrita, A. F., Xu, Y., Vadivel, K., Shidqi, K., Detterer, P., Konijnenburg, M., van Schaik, G.-J., Sifalakis, M., Al-Ars, Z. & Yousefzadeh, A.https://doi.org/10.48550/arXiv.2506.03450Efficient Synaptic Delay Implementation in Digital Event-Driven AI Accelerators (2025)[Working paper › Preprint]. ArXiv.org. Meijer, R., Detterer, P., Yousefzadeh, A., Patino-Saucedo, A., Tang, G., Vadivel, K., Xu, Y., Gomony, M.-D., Corradi, F., Linares-Barranco, B. & Sifalakis, M.https://doi.org/10.48550/arXiv.2501.13610Explore Activation Sparsity in Recurrent LLMs for Energy-Efficient Neuromorphic Computing (2025)[Working paper › Preprint]. ArXiv.org. Knunyants, I., Tavakol, M., Sifalakis, M., Xu, Y., Yousefzadeh, A. & Tang, G.https://doi.org/10.48550/arXiv.2501.16337

2024

EON-1: A Brain-Inspired Processor for Near-Sensor Extreme Edge Online Feature Extraction (2024)IEEE Transactions on Circuits and Systems for Artificial Intelligence, 1(2), 128-140. Article 10744412. Dobrita, A., Yousefzadeh, A., Thorpe, S., Vadivel, K., Detterer, P., Tang, G., Schaik, G.-J. v., Konijnenburg, M., Gebregiorgis, A., Hamdioui, S. & Sifalakis, M.https://doi.org/10.1109/TCASAI.2024.3491673Energy-efficient SNN Architecture using 3nm FinFET Multiport SRAM-based CIM with Online Learning (2024)In Proceedings of the 61st ACM/IEEE Design Automation Conference, DAC 2024 (pp. 1-6). Article 260 (Proceedings - Design Automation Conference). IEEE. Huijbregts, L., Liu, H. H., Detterer, P., Hamdioui, S., Yousefzadeh, A. & Bishnoi, R.https://doi.org/10.1145/3649329.3656514Invited: Neuromorphic Vision Modalities in the NimbleAI 3D Chip (2024)In Proceedings of the 61st ACM/IEEE Design Automation Conference, DAC 2024 (pp. 1-4). Article 358 (Proceedings - Design Automation Conference). IEEE. Iturbe, X., Linares-Barranco, B., Ieng, S. H., Erdmann, A., Peres, L., Rhodes, O., Tornero, R., Sifalakis, M., Van De Burgwal, M., Yousefzadeh, A., Kooli, M., Alidori, R. & Zaykov, P.https://doi.org/10.1145/3649329.3689622

Onderzoeksprofielen

Funded projects: 

  1. NeAIxt (2025): Next Generation of edge AI crossing technology fields
  2. TIRAMISU(2024): Training and Innovation in Reliable and Efficient Chip Design for Edge AI
  3. NEUROKIT2E(2023): Open-source deep learning platform dedicated to Embedded hardware and Europe
  4. REBECCA(2023): Reconfigurable Heterogeneous Highly Parallel Processing Platform for safe and secure AI
  5. NimbleAI(2022): Ultra-energy efficient and secure neuromorphic sensing and processing at the endpoint

PhD Students: 

  1. Sameed Sohail(2024-Present): Embedded Neuromorphic Processor Architecture with On-Device Adaptation

Master students: 

  1. Lennart Jensen (2026): Improving reliability of neuromorphic processor for space applications
  2. Peter Kingma (2026): Error correction for a fast asynchronous neuromorphic link
  3. Ada Dotsika (2026): Analog implementation of GRU unit for keyword spotting applications
  4. Douwe Vries (2026): Post-synthesis power optimization for digital neuromorphic processors
  5. Pratik Phadte (2026): Near sensor processing for smart lighting application
  6. Belal Elshinnawey (2026): Embedded FPGA design for neuromorphic processors
  7. Arjan Blankestijn(2026): Accelerating Transformers on ZynQ platforms (work in progress conference presentation)
  8. Bram Bremer(2025): Real-time acoustic imaging on an FPGA using recurrent neural networks
  9. Mattias Westerink(2025): Designing co-processor for RISC-V-based neuromorphic system
  10. Wiebren Wijnstra(2025): Optimizing RISC-V processors for neuromorphic workloads
  11. Wim Nijsink(2025): Measuring the reliability of existing neuromorphic solutions
  12. Sharon Moolenaar(2025): Optimizing Network on chip for neuromorphic processors
  13. Haoran Wolfgang(2024): Low latency hardware accelerator for sparse convolutional recurrent network toward neuromorphic object detection
  14. Ivan Knunyants(2024): Optimizing transformer neural networks for event-driven inference in hardware
  15. Yashwanth Gopinath(2024): Open-source RISC-V-based neuromorphic processor
  16. Roel Koopman (2023): Overcoming the Limitations of Layer Synchronization in Spiking Neural Networks
  17. Cina Arjmand (2023): Trainable Region of Interest Prediction: Hard Attention Framework for Hardware-Efficient Event-Based Computer Vision Neural Networks on Neuromorphic Processors  
  18. Lucas Huijbregts (2023): Transposable Multiport SRAM-based In-Memory Compute Engine for Binary Spiking Neural Networks in 3nm FinFET
  19. Shenqi Wang (2023): Hardware Efficient Object Detection for High Spatial Resolution Event Camera
  20. Refik Can Bilgiç (2023):  Analytical Modelling of 3D System Partitioning
  21. Pietro Martinello (2023): Forging a Multimodal Dataset: Uniting Diverse Sensor Data for Enhanced Analysis
  22. Roy Meijer (2023): Efficient Synaptic Delay Implementation in Digital Event-Driven Neuromorphic Processors
  23. Kevin Shidqi (2022): Benchmarking and Algorithm Optimization for SENeCA, a RISC-V-based Neuromorphic Processor
  24. Alexandra-Florentina Dobrit (2022): Brain-inspired feature extraction for near sensor extreme edge processing with Spiking Neural Networks
  25. Prithvish Vijaykumar Nembhani (2022): Efficient mapping of large-scale SNN and rate-based DNN on SENeCA
  26. Preetha Vijayan (2021): Temporal Delta Layer: Exploiting Temporal Sparsity in Deep Neural Networks for Time-Series Data

Bachelor students:

  1. Bas Reterink (2025): Person detection using an event-based camera on STM32
  2. Pierluigi Gatt(2025): Person detection using an event-based camera on STM32
  3. Mattijn Spitteler(2025): Improving the analogue section of IO extenders for a hydraulic cylinder controller

Visiting students:

  1. Ege Tan (2025): neuromorphic processor external communication 
  2. Ethan Milon(2024): Radar processing for smart office applications
  3. Mustafa Canitz(2024): Event-based camera processing for smart office applications
  4. YingFu Xu (2022):  Implementation of bio-inspired Optimical flow algorithm in neuromorphic processor
  5. Alberto Patino-Saucedo (2022): Hardware-aware training of models with synaptic delays for digital event-driven neuromorphic processors
Scan de QR-code of
Download vCard