Ik ben in februari 2024 bij de Universiteit Twente begonnen als universitair docent edge AI. Mijn focus ligt op het ontwerpen van embedded AI en neuromorfische systemen.


Kort CV:


Ph.D. in neuromorfische engineering bij IMSE, proefschrift: Digital Design For Neuromorphic Bio-Inspired Vision Processing

2018-2020: Bij de startup GrAI Matter Labs, later overgenomen door SNAP, heb ik voornamelijk gewerkt aan de architectuur van de NeuronFlow-processor

2020-2024: Bij imec, bij de Hardware Efficient AI-groep, heb ik voornamelijk gewerkt aan de architectuur van de SENECA-processor

2024-heden: universitair docent, Computer Architecture for Embedded Systems

Expertises

  • Computer Science

    • Neural Network
    • Computer Hardware
    • Energy Efficient
    • Artificial Intelligence
    • Electronic Learning
  • Engineering

    • Internet-Of-Things
    • Artificial Neural Network
    • Sensor System

Organisaties

Mijn onderzoeksinteresses:

  • Neuromorphic Sensing and processing
  • Low Power / Scalable AI processos
  • Hardware aware algorithm design

Ik gebruik uitgebreid digitale hardware-ontwerptools en gate-level simulaties om hardware-architecturen te co-optimaliseren met neurale netwerkalgoritmen. Enkele van mijn technische ervaringen:

  • Ontwerp van programmeerbare neuromorfische processoren voor ingebedde AI-toepassingen
  • On-device leeralgoritmen en hardwareversnellers
  • Bio-geïnspireerde visuele verwerking
  • Benchmarking en vergelijking van verschillende algoritme-optimalisaties in hardware

Op zoek naar PhD- of postdoc-posities: kijk op de UTwente-carrièrewebsite. Alle posities worden daar geadverteerd en sollicitaties moeten online worden ingediend. Stuur uw sollicitatie niet per e-mail.

Op zoek naar masterscriptie of stage: stuur me een e-mail met uw cv en cijfers (zowel bachelor als master).

Publicaties

2025

Spike-based neuromorphic computing: An overview from bio-inspiration to hardware architectures and learning mechanisms (2025)Microprocessors and microsystems. Article 105240 (E-pub ahead of print/First online). Gebregiorgis, A., Yousefzadeh, A., Eissa, S., Siddiqi, M. A., Frenkel, C., Zenke, F., Bohte, S., Mahmoud, A. N., Das, A., Hamdioui, S., Corporaal, H. & Corradi, F.https://doi.org/10.1016/j.micpro.2025.105240Editorial: Algorithm-hardware co-optimization in neuromorphic computing for efficient AI (2025)Frontiers in Neuroscience, 19, 01-03. Article 1746610. Yousefzadeh, A., Patiño-Saucedo, A., De Croon, G. & Sifalakis, M.https://doi.org/10.3389/fnins.2025.1746610From RISC-V Cores to Neuromorphic Arrays: A Tutorial on Building Scalable Digital Neuromorphic Processors (2025)[Working paper › Preprint]. ArXiv.org. Yousefzadeh, A.https://doi.org/10.48550/arXiv.2512.00113Overcoming the Limitations of Layer Synchronization in Spiking Neural Networks (2025)[Working paper › Preprint]. ArXiv.org. Koopman, R., Yousefzadeh, A., Shahsavari, M., Tang, G. & Sifalakis, M.https://doi.org/10.48550/arXiv.2408.05098TrackCore-F: Deploying Transformer-Based Subatomic Particle Tracking on FPGAs (2025)[Working paper › Preprint]. ArXiv.org. Blankestijn, A., Odyurt, U. & Yousefzadeh, A.https://doi.org/10.48550/arXiv.2509.26335Memory Wall is not gone: A Critical Outlook on Memory Architecture in Digital Neuromorphic Computing (2025)In IEEE Computer Society Annual Symposium on VLSI, ISVLSI 2025 - Conference Proceedings (Proceedings of IEEE Computer Society Annual Symposium on VLSI, ISVLSI). IEEE. Yousefzadeh, A., Sohail, S. & Varbanescu, A. L.https://doi.org/10.1109/ISVLSI65124.2025.11130262Event-based optical flow on neuromorphic processor: ANN vs. SNN comparison based on activation sparsification (2025)Neural networks, 188. Article 107447. Xu, Y., Tang, G., Yousefzadeh, A., de Croon, G. C. H. E. & Sifalakis, M.https://doi.org/10.1016/j.neunet.2025.107447Sparse Convolutional Recurrent Learning for Efficient Event-based Neuromorphic Object Detection (2025)[Working paper › Preprint]. ArXiv.org. Wang, S., Xu, Y., Yousefzadeh, A., Eissa, S., Corporaal, H., Corradi, F. & Tang, G.https://doi.org/10.48550/arXiv.2506.13440Senmap: Multi-objective data-flow mapping and synthesis for hybrid scalable neuromorphic systems (2025)[Working paper › Preprint]. ArXiv.org. Nembhani, P. V., Rhodes, O., Tang, G., Dobrita, A. F., Xu, Y., Vadivel, K., Shidqi, K., Detterer, P., Konijnenburg, M., van Schaik, G.-J., Sifalakis, M., Al-Ars, Z. & Yousefzadeh, A.https://doi.org/10.48550/arXiv.2506.03450Efficient Synaptic Delay Implementation in Digital Event-Driven AI Accelerators (2025)[Working paper › Preprint]. ArXiv.org. Meijer, R., Detterer, P., Yousefzadeh, A., Patino-Saucedo, A., Tang, G., Vadivel, K., Xu, Y., Gomony, M.-D., Corradi, F., Linares-Barranco, B. & Sifalakis, M.https://doi.org/10.48550/arXiv.2501.13610

Onderzoeksprofielen

Funded projects: 

  1. NeAIxt (2025): Next Generation of edge AI crossing technology fields
  2. TIRAMISU(2024): Training and Innovation in Reliable and Efficient Chip Design for Edge AI
  3. NEUROKIT2E(2023): Open-source deep learning platform dedicated to Embedded hardware and Europe
  4. REBECCA(2023): Reconfigurable Heterogeneous Highly Parallel Processing Platform for safe and secure AI
  5. NimbleAI(2022): Ultra-energy efficient and secure neuromorphic sensing and processing at the endpoint

PhD Students: 

  1. Sameed Sohail(2024-Present): Embedded Neuromorphic Processor Architecture with On-Device Adaptation

Master students: 

  1. Kaushik Narayan (2026): Compressed sensing for neuromorphic processor pre-processing (with Innatera)
  2. Mohammed Huzaifa (2026): Accelerator design for learning in neuromorphic processors
  3. Sjoerd van der Plaat (2026): Optimizing off-chip memory access through dynamic inference, applied on Jetson Nano.
  4. Stefan den Haan (2026): Asynchronous inference on SparkRV neuromorphic processor
  5. Lennart Jensen (2026): Improving reliability of neuromorphic processor for space applications
  6. Peter Kingma (2026): Error correction for a fast asynchronous neuromorphic link
  7. Ada Dotsika (2026): Analog implementation of GRU unit for keyword spotting applications
  8. Douwe Vries (2026): Post-synthesis power optimization for digital neuromorphic processors
  9. Pratik Phadte (2026): Near sensor processing for smart lighting application (with Signify)
  10. Arjan Blankestijn(2026): Accelerating Transformers on ZynQ platforms (work in progress conference presentation)
  11. Belal Elshinnawey (2026): Embedded FPGA design for neuromorphic processors
  12. Bram Bremer(2025, cum-laude): Real-time acoustic imaging on an FPGA using recurrent neural networks
  13. Mattias Westerink(2025, cum-laude): Designing co-processor for RISC-V-based neuromorphic system
  14. Wiebren Wijnstra(2025): Optimizing RISC-V processors for neuromorphic workloads
  15. Wim Nijsink(2025): Measuring the reliability of existing neuromorphic solutions
  16. Sharon Moolenaar(2025): Optimizing Network on chip for neuromorphic processors
  17. Haoran Wolfgang(2024): Low-latency hardware accelerator for sparse convolutional recurrent network toward neuromorphic object detection
  18. Ivan Knunyants(2024): Optimizing transformer neural networks for event-driven inference in hardware
  19. Yashwanth Gopinath(2024): Open-source RISC-V-based neuromorphic processor
  20. Roel Koopman (2023): Overcoming the Limitations of Layer Synchronization in Spiking Neural Networks
  21. Cina Arjmand (2023): Trainable Region of Interest Prediction: Hard Attention Framework for Hardware-Efficient Event-Based Computer Vision Neural Networks on Neuromorphic Processors  
  22. Lucas Huijbregts (2023): Transposable Multiport SRAM-based In-Memory Compute Engine for Binary Spiking Neural Networks in 3nm FinFET
  23. Shenqi Wang (2023): Hardware Efficient Object Detection for High Spatial Resolution Event Camera
  24. Refik Can Bilgiç (2023):  Analytical Modelling of 3D System Partitioning
  25. Pietro Martinello (2023): Forging a Multimodal Dataset: Uniting Diverse Sensor Data for Enhanced Analysis
  26. Roy Meijer (2023): Efficient Synaptic Delay Implementation in Digital Event-Driven Neuromorphic Processors
  27. Kevin Shidqi (2022): Benchmarking and Algorithm Optimization for SENeCA, a RISC-V-based Neuromorphic Processor
  28. Alexandra-Florentina Dobrit (2022): Brain-inspired feature extraction for near sensor extreme edge processing with Spiking Neural Networks
  29. Prithvish Vijaykumar Nembhani (2022): Efficient mapping of large-scale SNN and rate-based DNN on SENeCA
  30. Preetha Vijayan (2021): Temporal Delta Layer: Exploiting Temporal Sparsity in Deep Neural Networks for Time-Series Data

Bachelor students:

  1. Emiel de Vries (2026): LLM-assisted RTL generation for a pretrained deep neural network
  2. Bas Reterink (2025): Person detection using an event-based camera on STM32
  3. Pierluigi Gatt(2025): Person detection using an event-based camera on STM32
  4. Mattijn Spitteler(2025): Improving the analogue section of IO extenders for a hydraulic cylinder controller

Visiting students:

  1. Mohamed Saber (MSc, 2026): Nano LLMs mapping for neuromorphic systems
  2. Harinandanan Ajith Maya (BSc, 2026): ChipLet-based neuromorphic processing platform
  3. Omar Mansour (MSc, 2025): NERVE: A Neuromorphic Vision and Radar Ensemble for Multi-Sensor Fusion Research (FAIR Data Fund project)
  4. Ege Tan (BSc, 2025): neuromorphic processor external communication 
  5. Ethan Milon(MSc, 2024): Radar processing for smart office applications
  6. Mustafa Canitz(BSc, 2024): Event-based camera processing for smart office applications
Scan de QR-code of
Download vCard