Ik ben in februari 2024 bij de Universiteit Twente begonnen als universitair docent edge AI. Mijn focus ligt op het ontwerpen van embedded AI en neuromorfische systemen.


Kort CV:


Ph.D. in neuromorfische engineering bij IMSE, proefschrift: Digital Design For Neuromorphic Bio-Inspired Vision Processing

2018-2020: Bij de startup GrAI Matter Labs, later overgenomen door SNAP, heb ik voornamelijk gewerkt aan de architectuur van de NeuronFlow-processor

2020-2024: Bij imec, bij de Hardware Efficient AI-groep, heb ik voornamelijk gewerkt aan de architectuur van de SENECA-processor

2024-heden: universitair docent, Computer Architecture for Embedded Systems

Expertises

  • Computer Science

    • Computer Hardware
    • Neural Network
    • Artificial Intelligence
    • Energy Efficient
    • Electronic Learning
    • Edge AI
    • Multicore
  • Engineering

    • Internet-Of-Things

Organisaties

Onderzoekservaringen:

  • Neuromorfische detectie en verwerking
  • Ingebedde AI

Ik gebruik uitgebreid digitale hardware-ontwerptools en gate-level simulaties om hardware-architecturen te co-optimaliseren met neurale netwerkalgoritmen. Enkele van mijn technische ervaringen:

  • Ontwerp van programmeerbare neuromorfische processoren voor ingebedde AI-toepassingen
  • On-device leeralgoritmen en hardwareversnellers
  • Bio-geïnspireerde visuele verwerking
  • Benchmarking en vergelijking van verschillende algoritme-optimalisaties in hardware

Op zoek naar PhD- of postdoc-posities: kijk op de UTwente-carrièrewebsite. Alle posities worden daar geadverteerd en sollicitaties moeten online worden ingediend. Stuur uw sollicitatie niet per e-mail.

Op zoek naar masterscriptie of stage: stuur me een e-mail met uw cv en cijfers (zowel bachelor als master).

Publicaties

2025

Efficient Synaptic Delay Implementation in Digital Event-Driven AI Accelerators (2025)[Working paper › Preprint]. ArXiv.org. Meijer, R., Detterer, P., Yousefzadeh, A., Patino-Saucedo, A., Tang, G., Vadivel, K., Xu, Y., Gomony, M.-D., Corradi, F., Linares-Barranco, B. & Sifalakis, M.https://doi.org/10.48550/arXiv.2501.13610

2024

EON-1: A Brain-Inspired Processor for Near-Sensor Extreme Edge Online Feature Extraction (2024)IEEE Transactions on Circuits and Systems for Artificial Intelligence, 1(2), 128-140. Article 10744412. Dobrita, A., Yousefzadeh, A., Thorpe, S., Vadivel, K., Detterer, P., Tang, G., Schaik, G.-J. v., Konijnenburg, M., Gebregiorgis, A., Hamdioui, S. & Sifalakis, M.https://doi.org/10.1109/TCASAI.2024.3491673Energy-efficient SNN Architecture using 3nm FinFET Multiport SRAM-based CIM with Online Learning (2024)In Proceedings of the 61st ACM/IEEE Design Automation Conference, DAC 2024 (pp. 1-6). Article 260 (Proceedings - Design Automation Conference). IEEE. Huijbregts, L., Liu, H. H., Detterer, P., Hamdioui, S., Yousefzadeh, A. & Bishnoi, R.https://doi.org/10.1145/3649329.3656514Invited: Neuromorphic Vision Modalities in the NimbleAI 3D Chip (2024)In Proceedings of the 61st ACM/IEEE Design Automation Conference, DAC 2024 (pp. 1-4). Article 358 (Proceedings - Design Automation Conference). IEEE. Iturbe, X., Linares-Barranco, B., Ieng, S. H., Erdmann, A., Peres, L., Rhodes, O., Tornero, R., Sifalakis, M., Van De Burgwal, M., Yousefzadeh, A., Kooli, M., Alidori, R. & Zaykov, P.https://doi.org/10.1145/3649329.3689622Multidie 3-D Stacking of Memory Dominated Neuromorphic Architectures (2024)IEEE transactions on very large scale integration (VLSI) systems, 32(11), 2144-2148. Giacomini Rocha, L. M., Bilgic, R., Naeim, M., Das, S., Oprins, H., Yousefzadeh, A., Konijnenburg, M., Milojevic, D., Myers, J., Ryckaert, J. & Biswas, D.https://doi.org/10.1109/TVLSI.2024.3421625Overcoming the Limitations of Layer Synchronization in Spiking Neural Networks (2024)[Working paper › Preprint]. ArXiv.org. Koopman, R., Yousefzadeh, A., Shahsavari, M., Tang, G. & Sifalakis, M.https://doi.org/10.48550/arXiv.2408.05098Event-based Optical Flow on Neuromorphic Processor: ANN vs. SNN Comparison based on Activation Sparsification (2024)[Working paper › Preprint]. ArXiv.org. Xu, Y., Tang, G., Yousefzadeh, A., de Croon, G. C. H. E. & Sifalakis, M.https://doi.org/10.48550/arXiv.2407.20421Co-optimized training of models with synaptic delays for digital neuromorphic accelerators (2024)In ISCAS 2024 - IEEE International Symposium on Circuits and Systems (Proceedings - IEEE International Symposium on Circuits and Systems). IEEE. Patiño-Saucedo, A., Meijer, R., Detteter, P., Yousefzadeh, A., Garrido-Regife, L., Linares-Barranco, B. & Sifalakis, M.https://doi.org/10.1109/ISCAS58744.2024.10558209Eon-1: A Brain-Inspired Processor for Near-Sensor Extreme Edge Online Feature Extraction (2024)[Working paper › Preprint]. ArXiv.org. Dobrita, A., Yousefzadeh, A., Thorpe, S., Vadivel, K., Detterer, P., Tang, G., van Schaik, G.-J., Konijnenburg, M., Gebregiorgis, A., Hamdioui, S. & Sifalakis, M.https://doi.org/10.48550/arXiv.2406.17285Trip: Trainable Region-of-Interest Prediction for Hardware-Efficient Neuromorphic Processing on Event-based Vision (2024)[Working paper › Preprint]. ArXiv.org. Arjmand, C., Xu, Y., Shidqi, K., Dobrita, A. F., Vadivel, K., Detterer, P., Sifalakis, M., Yousefzadeh, A. & Tang, G.https://doi.org/10.48550/arXiv.2406.17483

Onderzoeksprofielen

Funded projects: 

  1. NeAIxt (2025): Next Generation of edge AI crossing technology fields
  2. TIRAMISU(2024): Training and Innovation in Reliable and Efficient Chip Design for Edge AI
  3. NEUROKIT2E(2023): Open-source deep learning platform dedicated to Embedded hardware and Europe
  4. REBECCA(2023): Reconfigurable Heterogeneous Highly Parallel Processing Platform for safe and secure AI
  5. NimbleAI(2022): Ultra-energy efficient and secure neuromorphic sensing and processing at the endpoint

PhD Students: 

  1. Sameed Sohail: Embedded Neuromorphic Processor Architecture with On-Device Adaptation

Master students: 

  1. Bram Bremer: Real-time acoustic imaging on an FPGA using recurrent neural networks
  2. Arjan Blankestijn: Accelerating Transformers on ZynQ platforms
  3. Sharon Moolenaar: Optimizing Network on chip for neuromorphic processors
  4. Mattias Westerink: Designing co-processor for RISC-V-based neuromorphic system
  5. Wiebren Wijnstra: Optimizing RISC-V processor for neuromorphic workloads
  6. Wim Nijsink: Measuring the reliability of existing neuromorphic solutions
  7. Haoran Wolfgang: Low latency hardware accelerator for sparse convolutional recurrent network toward neuromorphic object detection
  8. Ivan Knunyants: Optimizing transformer neural networks for event-driven inference in hardware
  9. Yashwanth Gopinath: Open-source RISC-V-based neuromorphic processor
  10. Roel Koopman (2024): Overcoming the Limitations of Layer Synchronization in Spiking Neural Networks
  11. Cina Arjmand (2023): Trainable Region of Interest Prediction: Hard Attention Framework for Hardware-Efficient Event-Based Computer Vision Neural Networks on Neuromorphic Processors  
  12. Lucas Huijbregts (2023): Transposable Multiport SRAM-based In-Memory Compute Engine for Binary Spiking Neural Networks in 3nm FinFET
  13. Shenqi Wang (2023): Hardware Efficient Object Detection for High Spatial Resolution Event Camera
  14. Refik Can Bilgiç (2023):  Analytical Modelling of 3D System Partitioning
  15. Pietro Martinello (2023): Forging a Multimodal Dataset: Uniting Diverse Sensor Data for Enhanced Analysis
  16. Roy Meijer (2023): Efficient Synaptic Delay Implementation in Digital Event-Driven Neuromorphic Processors
  17. Kevin Shidqi (2022): Benchmarking and Algorithm Optimization for SENeCA, a RISC-V-based Neuromorphic Processor
  18. Alexandra-Florentina Dobrit (2022): Brain-inspired feature extraction for near sensor extreme edge processing with Spiking Neural Networks
  19. Prithvish Vijaykumar Nembhani (2022): Efficient mapping of large-scale SNN and rate-based DNN on SENeCA
  20. Preetha Vijayan (2021): Temporal Delta Layer: Exploiting Temporal Sparsity in Deep Neural Networks for Time-Series Data

Bachelor students:

  1. Mattijn Spitteler: Universal Software-Configurable Extender for Hydraulic Cylinder Controllers

Visiting students:

  1. Ethan Milon: Radar processing for smart office applications
  2. Mustafa Canitz: Event-based camera processing for smart office applications
  3. YingFu Xu (2022):  Implementation of bio-inspired Optimical flow algorithm in neuromorphic processor
  4. Alberto Patino-Saucedo (2022): Hardware-aware training of models with synaptic delays for digital event-driven neuromorphic processors
Scan de QR-code of
Download vCard