Expertises
Engineering & Materials Science
# Boundary Integral Equations
# Green'S Function
# Integral Equations
# Interpolation
# Scattering
Mathematics
# Boundary Integral Equations
# Green'S Function
# Layered Media
Verbonden aan
Publicaties
Recent
Strauszer, T., Faria, L. M., Fernandez-Lado, A.
, & Perez-Arancibia, C. (2023).
Windowed Green function method for wave scattering by periodic arrays of 2D obstacles.
Studies in Applied Mathematics,
150(1), 277-315. [12540].
https://doi.org/10.1111/sapm.12540
Strauszer, T., Faria, L. M.
, & Perez-Arancibia, C. (2022).
Windowed Green function method for acoustic and electromagnetic wave scattering by periodic media. In
Conference on Mathematics of Wave Phenomena (pp. 54-54)
https://conference22.waves.kit.edu/BoA.pdf
Arrieta, R.
, & Perez-Arancibia, C. (2022).
Windowed Green Function MoM for Second-Kind Surface Integral Equation Formulations of Layered Media Electromagnetic Scattering Problems.
IEEE transactions on antennas and propagation,
70(12), 11978-11989.
https://doi.org/10.1109/TAP.2022.3209245
Arrieta, R., Faria, L. M.
, Perez-Arancibia, C., & Turc, C. (2022).
A High-order Density-Interpolation-Based Nyström Method for Three-Dimensional Electromagnetic Boundary Integral Equations. In
The 15th International Conference on Mathematical and Numerical Aspects of Wave Propagation (pp. 158-159)
https://filesender.renater.fr/download.php?token=400b0beb-ad4b-49de-9268-b5097fe1d5c0&files_ids=16517819
Hu, J., Emmanuel, G.
, Perez-Arancibia, C., & Sideris, C. (2021).
High-Order Accurate Integral Equation Based Mode Solver for Layered Nanophotonic Waveguides. In
2021 IEEE MTT-S International Microwave Symposium (IMS) (pp. 128-131)
https://doi.org/10.1109/IMS19712.2021.9574857
Faria, L. M.
, Pérez-Arancibia, C., & Bonnet, M. (2021).
General-purpose kernel regularization of boundary integral equations via density interpolation.
Computer methods in applied mechanics and engineering,
378, [113703].
https://doi.org/10.1016/j.cma.2021.113703
Gómez, V.
, & Pérez-Arancibia, C. (2021).
On the regularization of Cauchy-type integral operators via the density interpolation method and applications.
Computers & mathematics with applications,
87, 107-119.
https://doi.org/10.1016/j.camwa.2021.02.002
Perez-Arancibia, C., Turc, C., Faria, L. M., & Sideris, C. (2021).
Planewave Density Interpolation Methods for the EFIE on Simple and Composite Surfaces.
IEEE transactions on antennas and propagation,
69(1), 317-331. [9142319].
https://doi.org/10.1109/TAP.2020.3008616
Nicholls, D. P.
, Pérez-Arancibia, C., & Turc, C. (2020).
Sweeping Preconditioners for the Iterative Solution of Quasiperiodic Helmholtz Transmission Problems in Layered Media.
Journal of scientific computing,
82, [44].
https://doi.org/10.1007/s10915-020-01133-z
Pérez-Arancibia, C., Shipman, S. P., Turc, C., & Venakides, S. (2019).
Domain Decomposition for Quasi-Periodic Scattering by Layered Media via Robust Boundary-Integral Equations at All Frequencies.
Communications in computational physics,
26(1), 265-310.
https://doi.org/10.4208/cicp.OA-2018-0021
Pérez Arancibia, C. A., Turc, C., & Faria, L. M. (2019).
Planewave Density Interpolation Methods for 3D Helmholtz Boundary Integral Equations.
SIAM journal on scientific computing,
41(4), A2088-A2116.
https://doi.org/10.1137/19m1239866,
https://doi.org/10.1137/19M1239866
Pérez-Arancibia, C., Faria, L. M., & Turc, C. (2019).
Harmonic density interpolation methods for high-order evaluation of Laplace layer potentials in 2D and 3D.
Journal of computational physics,
376, 411-434.
https://doi.org/10.1016/j.jcp.2018.10.002,
https://doi.org/10.1016/j.jcp.2018.10.002
Labarca, I., Faria, L. M.
, & Pérez-Arancibia, C. (2019).
Convolution quadrature methods for time-domain scattering from unbounded penetrable interfaces.
Proceedings of the Royal Society of London A. Mathematical, physical and engineering sciences,
475(2227).
https://doi.org/10.1098/rspa.2019.0029
Pérez Arancibia, C. A., Godoy, E., & Durán, M. (2018).
Modeling and simulation of an acoustic well stimulation method.
Wave motion,
77, 214-228.
https://doi.org/10.1016/j.wavemoti.2017.12.005,
https://doi.org/10.1016/j.wavemoti.2017.12.005
Pérez-Arancibia, C. (2018).
A plane-wave singularity subtraction technique for the classical Dirichlet and Neumann combined field integral equations.
Applied numerical mathematics,
123, 221-240.
https://doi.org/10.1016/j.apnum.2017.09.008
Pure Link
Google Scholar Link
Verbonden aan Opleidingen
Bachelor
Master
Overig
Vakken Collegejaar 2022/2023
Vakken in het huidig collegejaar worden toegevoegd op het moment dat zij definitief zijn in het Osiris systeem. Daarom kan het zijn dat de lijst nog niet compleet is voor het gehele collegejaar.
Vakken Collegejaar 2021/2022
Contactgegevens
Bezoekadres
Universiteit Twente
Drienerlolaan 5
7522 NB Enschede
Postadres
Universiteit Twente
Postbus 217
7500 AE Enschede