dr. E. Thibeau-Sutre (Elina)


Over mij

I obtained my PhD in 2021 at Paris Brain Institute with a thesis entitled Reproducible and interpretable deep learning for the diagnosis, prognosis and subtyping of Alzheimer’s disease from neuroimaging data. Another main output of my PhD is the contributions to two Python libraries:

My research interests are in deep learning for medical image analysis, in particular the study of their validity and robustness and their application to neurological problems.

I fully support my peers working on climate science, which is why I joined University Rebellion and Scientist Rebellion.


Thibeau-Sutre, E. , Alblas, D., Buurman, S. , Brune, C. , & Wolterink, J. M. (Accepted/In press). Uncertainty-based quality assurance of carotid artery segmentation. In Uncertainty for Safe Utilization of Machine Learning in Medical Imaging (UNSURE)
Thibeau-Sutre, E. , Wolterink, J. M., Colliot, O., & Burgos, N. (2023). How Can Data Augmentation Improve Attribution Maps for Disease Subtype Explainability? In O. Colliot, & I. Isgum (Eds.), SPIE Medical Imaging 2023: Image Processing Article 1246424 SPIE. https://doi.org/10.1117/12.2653809
Thibeau-Sutre, E., Díaz, M., Hassanaly, R., Routier, A., Dormont, D., Colliot, O., & Burgos, N. (2022). ClinicaDL: An open-source deep learning software for reproducible neuroimaging processing. Computer methods and programs in biomedicine, 220, Article 106818. https://doi.org/10.1016/j.cmpb.2022.106818
Thibeau-Sutre, E., Couvy-Duchesne, B., Dormont, D., Colliot, O., & Burgos, N. (2022). MRI field strength predicts Alzheimer's disease: a case example of bias in the ADNI data set. In MRI field strength predicts Alzheimer's disease: a case example of bias in the ADNI data set https://doi.org/10.1109/ISBI52829.2022.9761504
Overige bijdragen
Journal papers:
  1. Wen*, J., Thibeau-Sutre*, E., Díaz-Melo, M., Samper-González, J., Routier,A., Bottani, S., Dormont, D., Durrleman, S., Burgos, N. and Colliot, O.,“Convolutional Neural Networks for Classification of Alzheimer’s Disease: Overview and Reproducible Evaluation”, Medical Image Analysis, 63, 101694 (2020) doi:10.1016/j.media.2020.101694hal-02562504 (*: joint first authorship)
  2. Couvy-Duchesne*, B., Faouzi*, J., Martin*, B., Thibeau-Sutre*, E., Wild*, A., Ansart, M., Durrleman, S., Dormont, D., Burgos, N. and Colliot, O., “Ensemble Learning of Convolutional Neural Network, Support Vector Machine, and Best Linear Unbiased Predictor for Brain Age Prediction: ARAMIS Contribution to the Predictive Analytics Competition 2019 Challenge”, Frontiers in Psychiatry, 11 (2020) doi:10.3389/fpsyt.2020.593336hal-03136463 (*: joint first authorship)
  3. Burgos*, N., Bottani*, S., Faouzi*, J., Thibeau-Sutre*, E. and Colliot, O., “Deep learning for brain disorders: from data processing to disease treatment”, Briefings in Bioinformatics, 22(2), 1560–1576 (2021) doi:10.1093/bib/bbaa310hal-03070554 (*: joint first authorship)
  4. Chadebec, C., Thibeau-Sutre,E., Burgos, N. and Allassonnière, S., “Data augmentation on neuroimaging data with variational autoencoders”, IEEE Transactions on Pattern Analysis and Machine Intelligence (2022) 10.1109/TPAMI.2022.3185773arXiv: 2105.00026

Journal papers linked to software contributions:

  1. Routier, A., Burgos, N., Guillon, J., Samper-González, J., Wen, J. and Bottani, S.,Marcoux, A., Bacci, M., Fontanella, S., Jacquemont, T., Wild, A., Gori, P., Guyot,A., Lu, P., Díaz, M., Thibeau-Sutre, E., Moreau, T., Teichmann, M., Habert, M.-O., Durrleman, S. and Colliot, O., “Clinica: an open source software platform forreproducible clinical neuroscience studies”, Frontiers in Neuroinformatics, 15 (2021) doi:10.3389/fninf.2021.689675hal-02308126
  2. Thibeau-Sutre*, E., Díaz*, M., Hassanaly, R., Routier, A., Didier, D., Colliot, O.,Burgos, N., “ClinicaDL: an open-source deep learning software for reproducibleneuroimaging processing”, Computer Methods and Programs in Biomedicine (20220 10.1016/j.cmpb.2022.106818hal-03351976 (*: joint first authorship)

Peer-reviewed conference proceedings:

  1. Thibeau-Sutre, E., Colliot, O., Dormont, D. and Burgos, N., “Visualization approach to assess the robustness of neural networks for medical image classification”, SPIE Medical Imaging, 11313, 113131J, 2020 doi:10.1117/12.2548952hal-02370532
  2. Thibeau-Sutre, E., Couvy-Duchesne, B., Dormont, D., Colliot, O. and Burgos, N., “MRI Field Strength Predicts Alzheimer’s Disease: a Case Example of Bias in the ADNI Data Set”, ISBI - International Symposium on Biomedical Imaging, 2022 doi:10.1109/ISBI52829.2022.9761504hal-03542213
  3. Thibeau-Sutre, E., Wolterink, J., Dormont, D., Colliot, O. and Burgos, N., “How can data augmentation improve attribution maps for disease subtype explainability?”, SPIE Medical Imaging, 2023 hal-0396673

Pure Link

Google Scholar Link

Vakken Collegejaar  2023/2024

Vakken in het huidig collegejaar worden toegevoegd op het moment dat zij definitief zijn in het Osiris systeem. Daarom kan het zijn dat de lijst nog niet compleet is voor het gehele collegejaar.

Vakken Collegejaar  2022/2023



Universiteit Twente
Faculty of Electrical Engineering, Mathematics and Computer Science
Zilverling (gebouwnr. 11), kamer 2067
Hallenweg 19
7522NH  Enschede

Navigeer naar locatie


Universiteit Twente
Faculty of Electrical Engineering, Mathematics and Computer Science
Zilverling  2067
Postbus 217
7500 AE Enschede