EEMCS-AM-MIA

Expertises

  • Mathematics

    • Deep Learning Method
    • Neural Network
    • Convolutional Neural Network
    • Matrix (Mathematics)
    • Numerical Algorithm
  • Engineering

    • Sparse Approximation
  • Computer Science

    • Computer Vision
    • Laplace Operator

Organisaties

Publicaties

2025

Loss function inversion for improved crack segmentation in steel bridges using a CNN framework (2025)Automation in construction, 170. Article 105896. Kompanets, A., Duits, R., Pai, G., Leonetti, D. & Snijder, H. H.https://doi.org/10.1016/j.autcon.2024.105896

2024

Geodesic Tracking via New Data-Driven Connections of Cartan Type for Vascular Tree Tracking (2024)Journal of Mathematical Imaging and Vision, 66(2), 198-230. van den Berg, N. J., Smets, B. M. N., Pai, G., Mirebeau, J.-M. & Duits, R.https://doi.org/10.1007/s10851-023-01170-x

2023

Analysis of (sub-)Riemannian PDE-G-CNNs (2023)Journal of Mathematical Imaging and Vision, 65(6), 819-843. Bellaard, G., Bon, D. L. J., Pai, G., Smets, B. M. N. & Duits, R.https://doi.org/10.1007/s10851-023-01147-wFunctional Properties of PDE-Based Group Equivariant Convolutional Neural Networks: 6th International Conference on Geometric Science of Information, GSI 2023 (2023)[Other contribution › Other contribution]. Springer. Pai, G., Bellaard, G., Smets, B. M. N., Duits, R., Nielsen, F. & Barbaresco, F.https://doi.org/10.1007/978-3-031-38271-0_7Geometric Adaptations of PDE-G-CNNs (2023)In Scale Space and Variational Methods in Computer Vision: 9th International Conference, SSVM 2023, Santa Margherita di Pula, Italy, May 21–25, 2023, Proceedings (pp. 538-550). Springer. Bellaard, G., Pai, G., Oliván Bescós, J., Duits, R., Calatroni, L., Donatelli, M., Morigi, S., Prato, M. & Santacesaria, M.https://doi.org/10.1007/978-3-031-31975-4_41

2022

Deep Isometric Maps (2022)Image and vision computing, 123. Article 104461. Pai, G., Bronstein, A., Talmon, R. & Kimmel, R.https://doi.org/10.1016/j.imavis.2022.104461Implicit field supervision for robust non-rigid shape matching (2022)In European Conference on Computer Vision (pp. 344-362). Sundararaman, R., Pai, G. & Ovsjanikov, M.

2021

Dpfm: Deep partial functional maps (2021)In 2021 International Conference on 3D Vision (3DV) (pp. 175-185). Attaiki, S., Pai, G. & Ovsjanikov, M.https://doi.org/10.1109/3DV53792.2021.00040Fast sinkhorn filters: Using matrix scaling for non-rigid shape correspondence with functional maps (2021)In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 384-393). Pai, G., Ren, J., Melzi, S., Wonka, P. & Ovsjanikov, M.https://doi.org/10.1109/CVPR46437.2021.00045

2020

On geometric invariants, learning, and recognition of shapes and forms (2020)In Handbook of Variational Methods for Nonlinear Geometric Data (pp. 443-461). Pai, G., Joseph-Rivlin, M., Kimmel, R. & Sochen, N.https://doi.org/10.1007/978-3-030-31351-7_16

Onderzoeksprofielen

Vakken collegejaar 2024/2025

Vakken in het huidig collegejaar worden toegevoegd op het moment dat zij definitief zijn in het Osiris systeem. Daarom kan het zijn dat de lijst nog niet compleet is voor het gehele collegejaar.

Scan de QR-code of
Download vCard