Expertises
Engineering & Materials Science
# Bifurcation (Mathematics)
# Orbits
Mathematics
# Ambiguous
# Bifurcation
# Bistability
# Homoclinic
# Human Perception
# Visual Perception
Verbonden aan
Publicaties
Recent
Spek, L. (2023).
Analysis of Dynamics of Neural Fields and Neural Networks. [PhD Thesis - Research UT, graduation UT, University of Twente]. University of Twente.
https://doi.org/10.3990/1.9789036554824
Lentjes, B.
, Spek, L., Bosschaert, M. M.
, & Kuznetsov, Y. A. (2022).
Periodic Center Manifolds and Normal Forms for DDEs in the Light of Suns and Stars. (pp. 1-59).
Govaerts, W.
, Kuznetsov, Y. A.
, Meijer, H. G. E., Neirynck, N.
, & van Wezel, R. J. A. (2021).
Bistability and Stabilization of Human Visual Perception under Ambiguous Stimulation.
Nonlinear Dynamics, Psychology, and Life Sciences,
25(3), 297-307.
Bosschaert, M. M.
, Janssens, S. G.
, & Kuznetsov, Y. A. (2020).
Switching to nonhyperbolic cycles from codimension two bifurcations of equilibria of delay differential equations.
SIAM journal on applied dynamical systems,
19(1), 252-303.
https://doi.org/10.1137/19M1243993
Spek, L.
, Kuznetsov, Y. A.
, & van Gils, S. A. (2020).
Neural field models with transmission delays and diffusion.
Journal of mathematical neuroscience,
10, [21].
https://doi.org/10.1186/s13408-020-00098-5
Kalia, M.
, Kouznetsov, I. A.
, & Meijer, H. G. E. (2019).
Homoclinic saddle to saddle-focus transitions in 4D systems.
Nonlinearity,
32(6), 2024-2054.
https://doi.org/10.1088/1361-6544/ab0041
Kouznetsov, I. A.
, & Meijer, H. G. E. (2019).
Numerical Bifurcation Analysis of Maps: From Theory to Software. (Cambridge Monographs on Applied and Computational Mathematics; Vol. 34). Cambridge University Press.
Al-Hdaibat, B., Govaerts, W., van Kekem, D. L.
, & Kuznetsov, Y. A. (2018).
Remarks on homoclinic structure in Bogdanov-Takens map.
Journal of difference equations and applications,
24(4), 575-587.
https://doi.org/10.1080/10236198.2017.1329894
Neirynck, N., Govaerts, W.
, Kouznetsov, I. A.
, & Meijer, H. G. E. (2018).
Numerical Bifurcation Analysis of Homoclinic Orbits Embedded in One-Dimensional Manifolds of Maps.
ACM transactions on mathematical software,
44(3), [25].
https://doi.org/10.1145/3134443
Pure Link
Contactgegevens
Bezoekadres
Universiteit Twente
Faculty of Electrical Engineering, Mathematics and Computer Science
Zilverling
(gebouwnr. 11), kamer 3058
Hallenweg 19
7522NH Enschede
Postadres
Universiteit Twente
Faculty of Electrical Engineering, Mathematics and Computer Science
Zilverling
3058
Postbus 217
7500 AE Enschede