Deze website is automatisch gegenereerd, mijn persoonlijke website bevindt zich hier.

Expertises

  • Computer Science

    • Attack
    • Differential Privacy
    • Utilities
    • Frequency Estimation
    • Algorithms
    • Robust Optimization
    • Integer-Linear Programming
    • Optimization Problem

Organisaties

Publicaties

2024

Provable Privacy Advantages of Decentralized Federated Learning via Distributed Optimization (2024)IEEE transactions on information forensics and security, 20, 822-838. Yu, W., Li, Q., Lopuhaa-Zwakenberg, M., Christensen, M. G. & Heusdens, R.https://doi.org/10.1109/TIFS.2024.3516564How hard can it be? Quantifying MITRE attack campaigns with attack trees and cATM logic (experimental reproduction package) (2024)[Dataset Types › Dataset]. Zenodo. Nicoletti, S. M., Lopuhaä-Zwakenberg, M., Stoelinga, M., Massacci, F. & Budde, C. E.https://doi.org/10.5281/zenodo.14193935On the Privacy Bound of Distributed Optimization and its Application in Federated Learning (2024)In 32nd European Signal Processing Conference, EUSIPCO 2024 - Proceedings (pp. 2232-2236) (European Signal Processing Conference). European Signal Processing Conference, EUSIPCO. Li, Q., Lopuhaä-Zwakenberg, M., Yu, W. & Heusdens, R.https://doi.org/10.23919/eusipco63174.2024.10715187How hard can it be?: Quantifying MITRE attack campaigns with attack trees and cATM logic (2024)[Working paper › Preprint]. ArXiv.org. Nicoletti, S. M., Lopuhaä-Zwakenberg, M., Stoelinga, M., Massacci, F. & Budde, C. E.https://doi.org/10.48550/arXiv.2410.06692Attack Tree Metrics are Operad Algebras (2024)In Proceedings - 2024 IEEE 37th Computer Security Foundations Symposium, CSF 2024 (pp. 665-679) (Proceedings - IEEE Computer Security Foundations Symposium). IEEE. Lopuhaa-Zwakenberg, M.https://doi.org/10.1109/CSF61375.2024.00005

Onderzoeksprofielen

In de pers

Scan de QR-code of
Download vCard