Tijdens een inspirerend promotie-onderzoek en postdoc aan zowel de Universiteit van Padova, Stanford University en het Universitair Medisch centrum Goettingen, verwierf Massimo Sartori fundamentele kennis in computationele neuromechanica wat hem motiveerde fundamentele vragen over mens en machine interactie te beantwoorden. Prof.dr.ir. Sartori was gast redacteur voor IEEE Transactions on Biomedical Engineering en Frontiers in Computational Neuroscience en leidde onderzoeksactiviteiten in nationale en Europese projecten. Tussen 2014 en 2018 ontving hij de NIH- OpenSim Fellowship, de NCSRR Outstanding Research Award, een Marie-SkĆodowska-Curie Individual Fellowship en een ERC Starting Grant. Hij is momenteel een associate-hoogleraar aan de Universiteit van Twente en leidt een groeiende onderzoeksgroep. Â
Expertises
Computer Science
- Models
- Control
- Robotics
Medicine and Dentistry
- Muscle
- Electromyography
- Joint
- Exoskeleton
Engineering
- Joints (Structural Components)
Organisaties
Publicaties
2024
2023
Onderzoeksprofielen
Verbonden aan opleidingen
Vakken collegejaar 2024/2025
Vakken in het huidig collegejaar worden toegevoegd op het moment dat zij definitief zijn in het Osiris systeem. Daarom kan het zijn dat de lijst nog niet compleet is voor het gehele collegejaar.
Vakken collegejaar 2023/2024
- 191150460 - Biomechanical Eng. - Capita Selecta
- 191199152 - Internship
- 191199198 - Master Graduation Assignment
- 193640010 - Capita selecta BME
- 193640999 - Internship BME
- 193650999 - Masters Assignment
- 195799152 - Internship
- 201200133 - Biomechatronics
- 201400462 - Internship S&C
- 201800156 - Biomechanics of human movement
- 202000249 - Master Graduation Assignment
- 202000250 - Internship
- 202000670 - Bachelor Assignment
- 202000880 - M12 BSc opdracht BMT
- 202200120 - Internship ROB
- 202300342 - Internship ROB/I-TECH
- 202300349 - Internship ROB/ME
- 202300353 - Internship (CSE/SET)
Lopende projecten
ROBOREACTOR: Robotic bioreactors for the longitudinal control of restorative remodelling in the human skeletal muscle
SMARTSENS
ERC Proof of Concept Grant: Smart wear for sensing the neuromusculoskeletal system during human movement in vivo
Neurological injuries such as stroke or spinal cord injury, leave 5 million people disabled worldwide annually, drastically impairing individuals' ability to move independently. The main element hampering efficacy of current neuro-rehabilitation procedures is the inability of sensing the activity of neural cells involved in the control of movement, along with the movement-generating mechanical force produced by innervated muscle-tendon units, in the intact moving human in vivo. Current technologies for sensing the neuromusculoskeletal system rely on expensive, large, and bulky sensing devices that can only be used in the highly controlled settings of research laboratories. Therefore, a wearable, rapid-to-wear system that could track function in a personâs motor neuron activity along with associated function in muscle, tendon and joint function would revolutionise current neuro-rehabilitation paradigms. SMARTSENS proposes a fully wearable, non-invasive solution to monitor a range of clinically relevant neuromuscular parameters, which currently could only be extracted in constrained laboratory settings via lengthy procedures. SMARTSENS enables measuring such information during daily life activities using a sensorised smart wear that is unobstructive and rapid to wear. This will enable continuous monitoring of the human neuromusculoskeletal system, which will disrupt current movement-measuring and diagnostic systems, by enabling causal understanding of the activity of neural and musculoskeletal structures in vivo at a resolution not considered before.
INTERACT: Modelling the neuromusculoskeletal system across spatiotemporal scales for a new paradigm of humanmachine motor interaction
INTERACT
Ieder jaar worden er miljoenen mensen door neurologisch letsel zoals een beroerte of ruggenmergletsel uitgeschakeld. Voor deze personen is herstel nog niet optimaal. De impact van de neurorevalidatiemachines van vandaag de dag wordt belemmerd door een beperkte kennis van hun fysieke interactie met het menselijk lichaam. Motorisch herstel kan alleen worden bereikt als positieve neuromusculaire aanpassingen gedurende een langere tijd worden gestuurd. Als we dergelijke aanpassing zouden kunnen voorspellen en beheersen om in de toekomst een positieve verandering teweeg te brengen, zou een nieuw tijdperk in revalidatie-robotica beginnen. INTERACT zal deze uitdaging aangaan door elektrische stimulatie van het ruggenmerg en de robot- exoskeletten te combineren met een nieuwe klasse van voorspellende multischaal modellen van het neuromusculaire systeem. Hierdoor kunnen robots autonoom de elektro-mechanische stimuli ontdekken die nodig zijn om de motorische functie in de loop van de tijd te herstellen. INTERACT zal fundamentele vragen over bewegingsneuromechanica via nieuwe beginselen van interactie tussen mens en machine beantwoorden, en heeft hiermee een brede impact op bio-engineering en robotica.
S.W.A.G.: Soft wearable assistive garments for human empowerment
Horizon Europe (CL4-Digital Emerging): Soft wearable assistive garments for human empowerment
Soft robotics has become one of the fastest growing fields over the last decade, and the development of technologies related to the associated modelling, sensing, actuation and control challenges has flourished as part of the fieldâs impetus. Soft robots have been demonstrated in diverse applications such as wearable devices, mobile or locomotive robots, as well as soft manipulators. Soft lower extremity exoskeletons ( âsoft wearable robotics (SWRs)) are one of the most challenging research topics, and require multidisciplinary approaches involving diverse fields such as neuroscience, biomechanics, robot control, ergonomics and other fields. SWAG aims to explore a fundamentally new approach to engineering soft structures that omit fully rigid materials for inflatable ones made from high-strength fabrics and films when manufacturing human-assistive exoskeletal devices that target strainprone segments of the human body (i.e. lower body and core). Such soft wearable adaptive garments with actuation capabilities offer higher variable stiffness and force-to-weight ratios compared to other existing methods, and simultaneously entirely conform to each jointâs intricate kinematics. Because of this, new design approaches can be used as building blocks to realise complete assistance for multi-degree-of-freedom joints, such as the ankle or hip, by adapting flexible and conforming motions achieved by continuum robot designs. SWAGâs advances will demonstrated in 4 different application scenarios. The project brings together 13 partners from 5 EU countries and the UK. The partners consist of an interdisciplinary combination of leading academics with very strong track records in their respective fields. They are supported by RTOs with demonstrated capabilities of developing and validating application-driven solutions, as well as two commercial partners aiming to lead the exploitation of SWAGâs outcomes.
SimBionics
Neuromechanical Simulation and Sensory Feedback for the Control of Bionic Legs
Voltooide projecten
ExoAid: 'PERSPECTIEF' Programme in Wearable Robotics
https://www.wearablerobotics.nl
GUTS: Get under the skin
Electromyography-driven musculoskeletal modelling for biomimetic myoelectric control of prostheses with variable stiffness actuators
H2R: Integrative Approach for the Emergence of Human-like Locomotion
Intelligent Orthotics and Prosthetics for Enhanced Human-Machine Interaction (INOPRO)
https://foerderportal.bund.de/foekat/jsp/SucheAction.do?actionMode=view&fkz=13N14909
SOPHIA
Socio-physical Interaction Skills for Cooperative Human-Robot Systems in Agile Production
Adres
Universiteit Twente
Horst Complex (gebouwnr. 20), kamer W111
De Horst 2
7522 LW Enschede
Universiteit Twente
Horst Complex W111
Postbus 217
7500 AE Enschede
Organisaties
Download vCard