Expertises
Engineering & Materials Science
# Brain
# Data Storage Equipment
# Energy Resources
# Feature Extraction
# Neural Networks
# Neurons
# Time Series Analysis
# Topology
Verbonden aan
Publicaties
Recent
Atashgahi, Z.
, Mocanu, D. C.
, Veldhuis, R. N. J., & Pechenizkiy, M. (2022).
Memory-free Online Change-point Detection: A Novel Neural Network Approach. ArXiv.org.
https://arxiv.org/abs/2207.03932
Sokar, G. A. Z. N.
, Atashgahi, Z., Pechenizkiy, M.
, & Mocanu, D. C. (2022).
Where to Pay Attention in Sparse Training for Feature Selection? ArXiv.org.
https://doi.org/10.48550/arXiv.2211.14627
Atashgahi, Z., Pieterse, J., Liu, S.
, Mocanu, D. C.
, Veldhuis, R. N. J., & Pechenizkiy, M. (2022).
A brain-inspired algorithm for training highly sparse neural networks.
Machine Learning,
111(12), 4411-4452.
https://doi.org/10.1007/s10994-022-06266-w
Atashgahi, Z., Sokar, G., van der Lee, T.
, Mocanu, E.
, Mocanu, D. C.
, Veldhuis, R., & Pechenizkiy, M. (2022).
Quick and robust feature selection: the strength of energy-efficient sparse training for autoencoders.
Machine Learning,
111, 377–414.
https://doi.org/10.1007/s10994-021-06063-x
Liu, S., Chen, T.
, Atashgahi, Z., Chen, X., Sokar, G.
, Mocanu, E., Pechenizkiy, M., Wang, Z.
, & Mocanu, D. C. (2022).
Deep Ensembling with No Overhead for either Training or Testing: The All-Round Blessings of Dynamic Sparsity. In
The Tenth International Conference on Learning Representations, ICLR 2022 OpenReview.
https://openreview.net/forum?id=RLtqs6pzj1-¬eId=d7CKVDyMGZi
Liu, S., Chen, T.
, Atashgahi, Z., Chen, X., Sokar, G. A. Z. N.
, Mocanu, E., Pechenizkiy, M., Wang, Z.
, & Mocanu, D. C. (2021).
FreeTickets: Accurate, Robust and Efficient Deep Ensemble by Training with Dynamic Sparsity. Poster session presented at Sparsity in Neural Networks: Advancing Understanding and Practice 2021, Online.
Liu, S., Chen, T., Chen, X.
, Atashgahi, Z., Yin, L., Kou, H., Shen, L., Pechenizkiy, M., Wang, Z.
, & Mocanu, D. C. (2021).
Sparse Training via Boosting Pruning Plasticity with Neuroregeneration (Poster). Poster session presented at Sparsity in Neural Networks: Advancing Understanding and Practice 2021, Online.
Kichler, N.
, Atashgahi, Z.
, & Mocanu, D. C. (2021).
Robustness of sparse MLPs for supervised feature selection (poster). Poster session presented at Sparsity in Neural Networks: Advancing Understanding and Practice 2021, Online.
Atashgahi, Z., Sokar, G. A. Z. N., van der Lee, T.
, Mocanu, E.
, Mocanu, D. C.
, Veldhuis, R. N. J., & Pechenizkiy, M. (2021).
Quick and robust feature selection: the strength of energy-efficient sparse training for autoencoders (Extended Abstract). In
BNAIC/BENELEARN 2021: The 33rd Benelux Conference on Artificial Intelligence and the 30th Belgian Dutch Conference on Machine Learning
Atashgahi, Z.
, Mocanu, D. C.
, Veldhuis, R. N. J., & Pechenizkiy, M. (2021).
Unsupervised Online Memory-free Change-point Detection using an Ensemble of LSTM-Autoencoder-based Neural Networks (Extended Abstract). Paper presented at 8th ACM Celebration of Women in Computing womENcourage, Prague, Czech Republic.
Pure Link
Google Scholar Link
Contactgegevens
Bezoekadres
Universiteit Twente
Faculty of Electrical Engineering, Mathematics and Computer Science
Zilverling
(gebouwnr. 11)
Hallenweg 19
7522NH Enschede
Postadres
Universiteit Twente
Faculty of Electrical Engineering, Mathematics and Computer Science
Zilverling
Postbus 217
7500 AE Enschede
Werkdagen
Week | Maandag | Dinsdag | Woensdag | Donderdag | Vrijdag |
Even | |||||
Oneven |